API / Belt / Belt_Map

Belt_Map

The top level provides generic immutable map operations.

It also has three specialized inner modules `Belt.Map.Int`, `Belt.Map.String` and `Belt.Map.Dict`.

Int

module Int = Belt_MapInt

String

module String = Belt_MapString

Dict

module Dict = Belt_MapDict

t

type t<'key, 'value, 'identity>

'key is the field type

`'value` is the element type `'identity` the identity of the collection

id

type id<'key, 'id> = Belt_Id.comparable<'key, 'id>

The identity needed for making an empty map.

make

let make: (~id: id<'k, 'id>) => t<'k, 'v, 'id>

make(~id) creates a new map by taking in the comparator.

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) let m = Belt.Map.make(~id=module(IntCmp)) Belt.Map.set(m, 0, "a") ```

isEmpty

let isEmpty: t<'a, 'b, 'c> => bool

isEmpty(m) checks whether a map m is empty.

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) Belt.Map.isEmpty(Belt.Map.fromArray([(1, "1")], ~id=module(IntCmp))) == false ```

has

let has: (t<'k, 'v, 'id>, 'k) => bool

has(m, k) checks whether m has the key k.

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) Belt.Map.has(Belt.Map.fromArray([(1, "1")], ~id=module(IntCmp)), 1) == true ```

cmpU

let cmpU: (t<'k, 'v, 'id>, t<'k, 'v, 'id>, (. 'v, 'v) => int) => int

cmp

let cmp: (t<'k, 'v, 'id>, t<'k, 'v, 'id>, ('v, 'v) => int) => int

cmp(m0, m1, vcmp);

Total ordering of map given total ordering of value function. It will compare size first and each element following the order one by one.

eqU

let eqU: (t<'k, 'v, 'id>, t<'k, 'v, 'id>, (. 'v, 'v) => bool) => bool

eq

let eq: (t<'k, 'v, 'id>, t<'k, 'v, 'id>, ('v, 'v) => bool) => bool

eq(m1, m2, veq) tests whether the maps m1 and m2 are equal, that is, contain equal keys and associate them with equal data. veq is the equality predicate used to compare the data associated with the keys.

findFirstByU

let findFirstByU: (t<'k, 'v, 'id>, (. 'k, 'v) => bool) => option<('k, 'v)>

findFirstBy

let findFirstBy: (t<'k, 'v, 'id>, ('k, 'v) => bool) => option<('k, 'v)>

findFirstBy(m, p) uses function f to find the first key value pair to match predicate p.

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) let s0 = Belt.Map.fromArray(~id=module(IntCmp), [(4, "4"), (1, "1"), (2, "2"), (3, "")]) Belt.Map.findFirstBy(s0, (k, v) => k == 4) /* (4, "4") */ ```

forEachU

let forEachU: (t<'k, 'v, 'id>, (. 'k, 'v) => unit) => unit

forEach

let forEach: (t<'k, 'v, 'id>, ('k, 'v) => unit) => unit

forEach(m, f) applies f to all bindings in map m. f receives the 'k as first argument, and the associated value as second argument. The bindings are passed to f in increasing order with respect to the ordering over the type of the keys.

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) let s0 = Belt.Map.fromArray(~id=module(IntCmp), [(4, "4"), (1, "1"), (2, "2"), (3, "")]) let acc = ref(list{}) Belt.Map.forEach(s0, (k, v) => acc := list{(k, v), ...acc.contents}) acc.contents == list{(4, "4"), (3, "3"), (2, "2"), (1, "1")} ```

reduceU

let reduceU: (t<'k, 'v, 'id>, 'acc, (. 'acc, 'k, 'v) => 'acc) => 'acc

reduce

let reduce: (t<'k, 'v, 'id>, 'acc, ('acc, 'k, 'v) => 'acc) => 'acc

reduce(m, a, f) computes (f(kN, dN) ... (f(k1, d1, a))...), where k1 ... kN are the keys of all bindings in m (in increasing order), and d1 ... dN are the associated data.

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) let s0 = Belt.Map.fromArray(~id=module(IntCmp), [(4, "4"), (1, "1"), (2, "2"), (3, "3")]) Belt.Map.reduce(s0, list{}, (acc, k, v) => list{ (k, v), ...acc, }) /* [(4, "4"), (3, "3"), (2, "2"), (1, "1"), 0] */ ```

everyU

let everyU: (t<'k, 'v, 'id>, (. 'k, 'v) => bool) => bool

every

let every: (t<'k, 'v, 'id>, ('k, 'v) => bool) => bool

every(m, p) checks if all the bindings of the map satisfy the predicate p. Order unspecified

someU

let someU: (t<'k, 'v, 'id>, (. 'k, 'v) => bool) => bool

some

let some: (t<'k, 'v, 'id>, ('k, 'v) => bool) => bool

some(m, p) checks if at least one binding of the map satisfy the predicate p. Order unspecified

size

let size: t<'k, 'v, 'id> => int

size(s)

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) Belt.Map.size(Belt.Map.fromArray([(2, "2"), (2, "1"), (3, "3")], ~id=module(IntCmp))) == 2 ```

toArray

let toArray: t<'k, 'v, 'id> => array<('k, 'v)>

toArray(s)

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) Belt.Map.toArray(Belt.Map.fromArray([(2, "2"), (1, "1"), (3, "3")], ~id=module(IntCmp))) == [ (1, "1"), (2, "2"), (3, "3"), ] ```

toList

let toList: t<'k, 'v, 'id> => list<('k, 'v)>

In increasing order.

See `Belt.Map.toArray`

fromArray

let fromArray: (array<('k, 'v)>, ~id: id<'k, 'id>) => t<'k, 'v, 'id>

fromArray(kvs, ~id);

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) Belt.Map.toArray(Belt.Map.fromArray([(2, "2"), (1, "1"), (3, "3")], ~id=module(IntCmp))) == [ (1, "1"), (2, "2"), (3, "3"), ] ```

keysToArray

let keysToArray: t<'k, 'v, 'id> => array<'k>

keysToArray(s);

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) Belt.Map.keysToArray(Belt.Map.fromArray([(2, "2"), (1, "1"), (3, "3")], ~id=module(IntCmp))) == [ 1, 2, 3, ] ```

valuesToArray

let valuesToArray: t<'k, 'v, 'id> => array<'v>

valuesToArray(s);

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) Belt.Map.valuesToArray( Belt.Map.fromArray([(2, "2"), (1, "1"), (3, "3")], ~id=module(IntCmp)), ) == ["1", "2", "3"] ```

minKey

let minKey: t<'k, 'a, 'b> => option<'k>

minKey(s) returns the minimum key, None if not exist.

minKeyUndefined

let minKeyUndefined: t<'k, 'a, 'b> => Js.undefined<'k>

See Belt.Map.minKey

maxKey

let maxKey: t<'k, 'a, 'b> => option<'k>

maxKey(s) returns the maximum key, None if not exist.

maxKeyUndefined

let maxKeyUndefined: t<'k, 'a, 'b> => Js.undefined<'k>

See Belt.Map.maxKey

minimum

let minimum: t<'k, 'v, 'a> => option<('k, 'v)>

minimum(s) returns the minimum key value pair, None if not exist.

minUndefined

let minUndefined: t<'k, 'v, 'a> => Js.undefined<('k, 'v)>

See Belt.Map.minimum

maximum

let maximum: t<'k, 'v, 'a> => option<('k, 'v)>

maximum(s) returns the maximum key value pair, None if not exist.

maxUndefined

let maxUndefined: t<'k, 'v, 'a> => Js.undefined<('k, 'v)>

See Belt.Map.maximum

get

let get: (t<'k, 'v, 'id>, 'k) => option<'v>

get(s, k)

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) Belt.Map.get(Belt.Map.fromArray([(2, "2"), (1, "1"), (3, "3")], ~id=module(IntCmp)), 2) == Some("2") Belt.Map.get(Belt.Map.fromArray([(2, "2"), (1, "1"), (3, "3")], ~id=module(IntCmp)), 2) == None ```

getUndefined

let getUndefined: (t<'k, 'v, 'id>, 'k) => Js.undefined<'v>

See Belt.Map.get

Returns `undefined` when not found

getWithDefault

let getWithDefault: (t<'k, 'v, 'id>, 'k, 'v) => 'v

getWithDefault(s, k, default)

See `Belt.Map.get` Returns default when `k` is not found.

getExn

let getExn: (t<'k, 'v, 'id>, 'k) => 'v

getExn(s, k)

See `Belt.Map.getExn` raise when `k` not exist

remove

let remove: (t<'k, 'v, 'id>, 'k) => t<'k, 'v, 'id>

remove(m, x) when x is not in m, m is returned reference unchanged.

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) let s0 = Belt.Map.fromArray([(2, "2"), (1, "1"), (3, "3")], ~id=module(IntCmp)) let s1 = Belt.Map.remove(s0, 1) let s2 = Belt.Map.remove(s1, 1) s1 === s2 Belt.Map.keysToArray(s1) == [2, 3] ```

removeMany

let removeMany: (t<'k, 'v, 'id>, array<'k>) => t<'k, 'v, 'id>

removeMany(s, xs)

Removing each of `xs` to `s`, note unlike `Belt.Map.remove`, the reference of return value might be changed even if none in `xs` exists `s`.

set

let set: (t<'k, 'v, 'id>, 'k, 'v) => t<'k, 'v, 'id>

set(m, x, y) returns a map containing the same bindings as m, with a new binding of x to y. If x was already bound in m, its previous binding disappears.

```res example module IntCmp = Belt.Id.MakeComparable({ type t = int let cmp = (a, b) => Pervasives.compare(a, b) }) let s0 = Belt.Map.fromArray([(2, "2"), (1, "1"), (3, "3")], ~id=module(IntCmp)) let s1 = Belt.Map.set(s0, 2, "3") Belt.Map.valuesToArray(s1) == ["1", "3", "3"] ```

updateU

let updateU: (t<'k, 'v, 'id>, 'k, (. option<'v>) => option<'v>) => t<'k, 'v, 'id>

update

let update: (t<'k, 'v, 'id>, 'k, option<'v> => option<'v>) => t<'k, 'v, 'id>

update(m, x, f) returns a map containing the same bindings as m, except for the binding of x. Depending on the value of y where y is f(get(m, x)), the binding of x is added, removed or updated. If y is None, the binding is removed if it exists; otherwise, if y is Some(z) then x is associated to z in the resulting map.

mergeMany

let mergeMany: (t<'k, 'v, 'id>, array<('k, 'v)>) => t<'k, 'v, 'id>

mergeMany(s, xs)

Adding each of `xs` to `s`, note unlike `add`, the reference of return value might be changed even if all values in `xs` exist `s`.

mergeU

let mergeU: ( t<'k, 'v, 'id>, t<'k, 'v2, 'id>, (. 'k, option<'v>, option<'v2>) => option<'v3>, ) => t<'k, 'v3, 'id>

merge

let merge: ( t<'k, 'v, 'id>, t<'k, 'v2, 'id>, ('k, option<'v>, option<'v2>) => option<'v3>, ) => t<'k, 'v3, 'id>

merge(m1, m2, f) computes a map whose keys is a subset of keys of m1 and of m2. The presence of each such binding, and the corresponding value, is determined with the function f.

keepU

let keepU: (t<'k, 'v, 'id>, (. 'k, 'v) => bool) => t<'k, 'v, 'id>

keep

let keep: (t<'k, 'v, 'id>, ('k, 'v) => bool) => t<'k, 'v, 'id>

keep(m, p) returns the map with all the bindings in m that satisfy predicate p.

partitionU

let partitionU: (t<'k, 'v, 'id>, (. 'k, 'v) => bool) => (t<'k, 'v, 'id>, t<'k, 'v, 'id>)

partition

let partition: (t<'k, 'v, 'id>, ('k, 'v) => bool) => (t<'k, 'v, 'id>, t<'k, 'v, 'id>)

partition(m, p) returns a pair of maps (m1, m2), where m1 contains all the bindings of s that satisfy the predicate p, and m2 is the map with all the bindings of s that do not satisfy p.

split

let split: (t<'k, 'v, 'id>, 'k) => ((t<'k, 'v, 'id>, t<'k, 'v, 'id>), option<'v>)

split(x, m) returns a tuple (l, r), data, where l is the map with all the bindings of m whose 'k is strictly less than x; r is the map with all the bindings of m whose 'k is strictly greater than x; data is None if m contains no binding for x, or Some(v) if m binds v to x.

mapU

let mapU: (t<'k, 'v, 'id>, (. 'v) => 'v2) => t<'k, 'v2, 'id>

map

let map: (t<'k, 'v, 'id>, 'v => 'v2) => t<'k, 'v2, 'id>

map(m, f) returns a map with same domain asm, where the associated valueaof all bindings ofmhas been replaced by the result of the application offtoa. The bindings are passed tof` in increasing order with respect to the ordering over the type of the keys.

mapWithKeyU

let mapWithKeyU: (t<'k, 'v, 'id>, (. 'k, 'v) => 'v2) => t<'k, 'v2, 'id>

mapWithKey

let mapWithKey: (t<'k, 'v, 'id>, ('k, 'v) => 'v2) => t<'k, 'v2, 'id>

mapWithKey(m, f)

The same as `Belt.Map.map` except that `f` is supplied with one more argument: the key.

getData

let getData: t<'k, 'v, 'id> => Belt_MapDict.t<'k, 'v, 'id>

getData(s0)

Advanced usage only Returns the raw data (detached from comparator), but its type is still manifested, so that user can pass identity directly without boxing.

getId

let getId: t<'k, 'v, 'id> => id<'k, 'id>

Advanced usage only

Returns the identity of s0.

packIdData

let packIdData: (~id: id<'k, 'id>, ~data: Belt_MapDict.t<'k, 'v, 'id>) => t<'k, 'v, 'id>

packIdData(~id, ~data)

Advanced usage only Returns the packed collection.

checkInvariantInternal

let checkInvariantInternal: t<'a, 'b, 'c> => unit

raise when invariant is not held